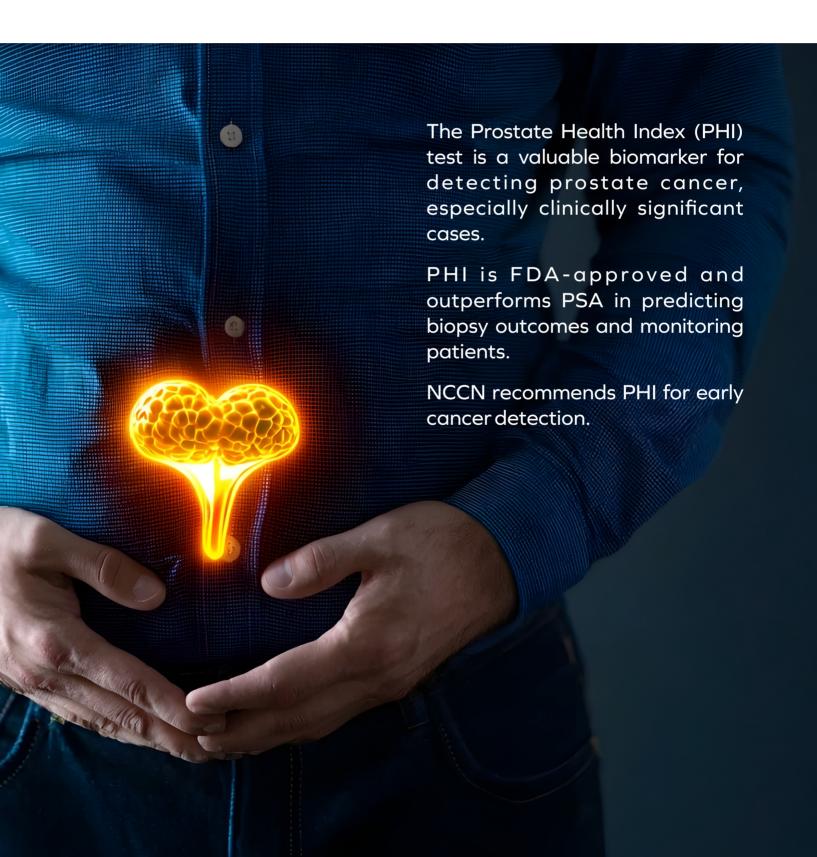
ATGClife

THE PIONEER IN GENETIC TESTING & REPORTING

Editorial Note 01 Haplotypes of the HBB Gene and Their Influence on Sickle Cell 02 **Disease Severity.** Genetic Basis of Sickle Cell Disease Co-Inheritance with 03 | Thalassemia. **Mitochondrial DNA Variants and Their Association with** 04 | Sickle Cell Disease Pathophysiology. The Role of BCL11A and MYB Genes in 05 **Modulating Sickle Cell Disease Severity. Epigenetic Modifications in Sickle Cell Disease:** 06

Impact on Gene Expression and Disease Progression.



Ideal for men:

50 years or older

PSA range: 2-10 ng/mL

In this issue, we delve into the role of HBB haplotypes Senegal, Benin, Bantu, Cameroon and their impact on fetal hemoglobin (HbF) levels, which significantly influence SCD severity. We also examine how the co-inheritance of alphaand beta-thalassemia alters the clinical course of SCD, highlighting the importance of genetic screening in personalized treatment strategies.

Additionally, we explore mitochondrial DNA variants and their contribution to oxidative stress, erythrocyte dysfunction, and vaso-occlusive crises. Emerging research suggests that targeting mitochondrial pathways may open new avenues for therapeutic interventions. Advances in genome-wide association studies (GWAS) have identified key regulatory genes like BCL11A and MYB, offering promising targets for gene-based therapies aimed at increasing HbF expression.

This edition provides a comprehensive overview of these genetic insights, paving the way for precision medicine approaches in SCD management.

Stay tuned for more cutting-edge discoveries in our upcoming editions.

Warm regards,

Dr. Hima J. ChallaDirector, GenepoweRx

Dr. Hima J. Challa

Director, GenepoweRx

MD FACP, MD in Internal Medicine, USA, Professional Degree in Medical Genomics, Harvard Medical School, Masters in Nutrition Science, Texas Women University,

Founding member of Pharmacogenomics Research Network, Program Director, Internal Medicine residency program, Campbell University

Haplotypes of the HBB Gene and Their Influence on Sickle Cell Disease Severity

Sickle cell disease (SCD) is a monogenic disorder caused by a point mutation in the beta-globin gene (HBB) on chromosome 11, resulting in the production of abnormal hemoglobin S (HbS). The severity and clinical variability of SCD are influenced by haplotypes linked to the HBB gene. These haplotypes, derived from distinct ancestral populations, are categorized based on specific polymorphic sites within the beta-globin gene cluster. The five major haplotypes—Senegal, Benin, Central African Republic (Bantu), Cameroon, and Arabludian play significant roles in modifying disease severity through their impact on fetal hemoglobin (HbF) levels and other genetic modifiers.

Major HBB Haplotypes and Their Clinical Implications

 Senegal Haplotype: This haplotype is associated with relatively mild SCD symptoms due to higher HbF levels, which inhibit HbS polymerization. Individuals with the Senegal haplotype often experience reduced vaso-occlusive crises and less organ damage.

CAC CTG GAC TGA GGA CTC CTC HBB GUG GAC CUG ACU CCU GAG GAG

(Val) His Leu Thr Pro Glu Glu Person with HBB/HBB CAC CTG GAC TGA GGA CTC CTC HBB GUG GAC CUG ACU CCU GAG GAG Val (His Leu (Thr (Pro)Glu (Glu CAC CTG GAC TGA GGA CTC CTC HBB GUG GAC CUG ACU CCU GAG GAG

(Val His Leu Thr Pro Glu Glu Person with HbAS CAC CTG GAC TGA GGA CAC CTC GUG GAC CUG ACU CCU GUG GAG (Val) His) Leu (Thr) Pro) (Val) Glu β^s allele GUG GAC CUG ACU CCU GUG GAG
(Val His Leu Thr Pro Val Glu Person with SCA CAC CTG GAC TGA GGA CAC CTC
GUG GAC CUG ACU CCU GUG GAG
(Val) (His) Leu (Thr) (Pro) (Val) (Glu) CAC CTG GAC TGA GGA CAC CTC GUG GAC CUG ACU CCU GUG GAG Person with HbSC (Val (His Leu (Thr (Pro Val (Glu β^{C} allele CAC CTG GAC TGA GGA TTC CTC GUG GAC CUG ACU CCU AAG GAG

(Val His Leu Thr Pro Lys Glu CAC CTG GAC TGA GGA CAC CTC
GUG GAC CUG ACU CCU GUG GAG
(Val) (His) (Leu) (Thr) (Pro) (Val) (Glu) Persor with HbSβ-CAC CTG GAC TGA GGA CTC CTC Hbβ⁰ or GUG GAC CUG ACU CCU GAG Hbβ⁺ allele Val His Leu Thr Pro Glu Glu

- Benin Haplotype: Predominantly found in West Africa and the Americas due to the transatlantic slave trade, the Benin haplotype is linked to intermediate disease severity. Patients with this haplotype typically have lower HbF levels than those with the Senegal haplotype, leading to more frequent complications.
- Central African Republic (Bantu) Haplotype:
 This haplotype is associated with severe disease phenotypes, including frequent pain crises and higher rates of complications such as stroke and organ damage. The low HbF levels observed in individuals carrying the Bantu haplotype contribute to increased sickling and reduced red blood cell survival.
- Cameroon Haplotype: Found in a restricted population, the Cameroon haplotype has a moderate clinical impact on SCD, though data on its exact influence are still limited. It is generally considered to be of intermediate severity.
 - Arab-Indian Haplotype: This haplotype is linked to significantly higher HbF levels, often exceeding 20%. Individuals carrying the Arab-Indian haplotype experience a milder disease course, with reduced sickling events and lower rates of complications.

Molecular Basis of HBB Haplotypes and HbF Expression

The primary determinant of haplotype-associated disease severity is the level of HbF production. The presence of specific single nucleotide polymorphisms (SNPs) within the beta-globin gene cluster influences the activity of the HBG2 and HBG1 genes, which encode the gamma-globin chains of fetal hemoglobin. Higher HbF levels inhibit HbS polymerization, reducing hemolysis and vaso-occlusion. Genetic variations in loci such as BCL11A, HBS1L-MYB, and KLF1 also interact with HBB haplotypes to modulate HbF expression.

- Sebastiani, P., Solovieff, N., Hartley, S. W., et al. (2010). Genetic modifiers of the severity of sickle cell anemia identified through a genome-wide association study. American Journal of Hematology, 85(1), 29-35. https://doi.org/10.1002/ajh.21500
- Rees, D. C., Williams, T. N., & Gladwin, M. T. (2010). Sickle-cell disease. The Lancet, 376(9757), 2018-2031. https://doi.org/10.1016/S0140-6736(10)61029-X.

Genetic Basis of Sickle Cell Disease

Co-Inheritance with Thalassemia

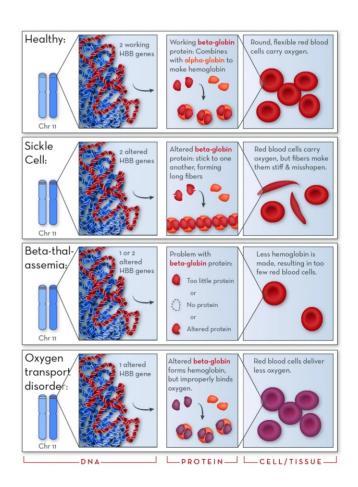
Sickle cell disease **(SCD)** and thalassemia are both inherited hemoglobinopathies that arise from mutations in the HBB gene. Co-inheritance of SCD with beta-thalassemia **(SCD/\beta-thal)** or alphathalassemia **(SCD/\alpha-thal)** results in variable disease severity depending on the type of mutation, globin chain imbalance, and fetal hemoglobin **(HbF)** levels. Understanding the genetic basis of SCD-thalassemia interactions is essential for accurate diagnosis, prognosis, and treatment.

Co-Inheritance of SCD and Beta-Thalassemia

Beta-thalassemia results from mutations that reduce or abolish beta-globin chain production, leading to imbalanced hemoglobin synthesis. When co-inherited with SCD, the clinical presentation varies based on the extent of beta-globin deficiency:

- Sickle Cell-BetaO Thalassemia (SCD/βO-thal):
 This condition is clinically similar to severe SCD since there is no beta-globin production from the affected allele. Patients experience frequent vaso-occlusive crises, severe anemia, and increased risk of complications such as stroke and organ damage.
- Sickle Cell-Beta+ Thalassemia (SCD/β+-thal):
 Patients retain some beta-globin production, leading to a milder phenotype. Symptoms are less severe compared to SCD/β0-thal, with reduced anemia and fewer vaso-occlusive crises. The severity depends on the specific beta-thalassemia mutation and residual hemoglobin production.

Co-Inheritance of SCD and Alpha-Thalassemia


Alpha-thalassemia results from deletions or mutations in the HBA1 and HBA2 genes, leading to reduced alpha-globin chain production. When coinherited with SCD, alpha-thalassemia has a modifying effect on disease severity:

 Reduced Hemolysis: Alpha-thalassemia decreases intracellular HbS concentration,

- reducing sickling and hemolysis. This leads to lower reticulocyte counts and less severe anemia.
- Increased Vaso-Occlusive Risk: While hemolysis
 is reduced, patients with co-inherited alphathalassemia may have increased blood viscosity,
 potentially raising the risk of vaso-occlusive
 complications such as stroke and acute chest
 syndrome.

Molecular and Clinical Implications

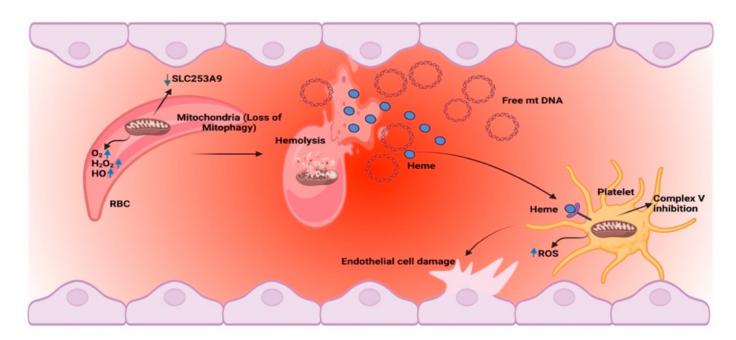
Genetic screening for SCD-thalassemia coinheritance is crucial for disease management. Molecular techniques such as polymerase chain reaction (PCR), high-performance liquid chromatography (HPLC), and next-generation sequencing (NGS) help identify mutations in the HBB and HBA genes. Personalized treatment strategies, including hydroxyurea therapy, transfusion protocols, and potential curative approaches like gene therapy or hematopoietic stem cell transplantation, depend on the specific genetic background.

- Weatherall, D. J. (2022). The evolving spectrum of the genetic disorders of hemoglobin. Blood, 139(7), 1002-1014. https://doi.org/10.1182/blood.2021010176
- Steinberg, M. H., Sebastiani, P., & Klings, E. S. (2023). Genetic modifiers of sickle cell disease. American Journal of Hematology, 98(1), 3-12. https://doi.org/10.1002/ajh.26541

Mitochondrial DNA Variants and Their Association with Sickle Cell Disease Pathophysiology

Mitochondrial dysfunction has emerged as a significant factor in the pathophysiology of sickle cell disease (SCD). Variants in mitochondrial DNA (mtDNA) can influence oxidative stress, red blood cell metabolism, and inflammation, all of which contribute to SCD severity. Given the high energy demand of erythropoiesis, mtDNA mutations affecting oxidative phosphorylation can exacerbate hemolysis and vaso-occlusive crises.

mtDNA Variants and Oxidative Stress in SCD


Studies have identified specific mtDNA haplogroups associated with altered oxidative stress responses in SCD patients. Variants in genes encoding mitochondrial complex I and III proteins have been linked to increased production of reactive oxygen species (ROS), leading to enhanced erythrocyte fragility and hemolysis. Additionally, mitochondrial dysfunction in SCD contributes to endothelial dysfunction and chronic inflammation, worsening disease progression.

Mitochondrial Bioenergetics and Red Blood Cell Dysfunction

Defective mitochondrial metabolism in hematopoietic stem cells (HSCs) affects erythropoiesis, leading to ineffective red blood cell production. Recent research highlights the role of mtDNA mutations in altering ATP production, reducing cellular resilience under hypoxic conditions common in SCD crises. Moreover, interactions between nuclear and mitochondrial genomes further influence SCD pathophysiology, suggesting a complex genetic interplay in disease modulation.

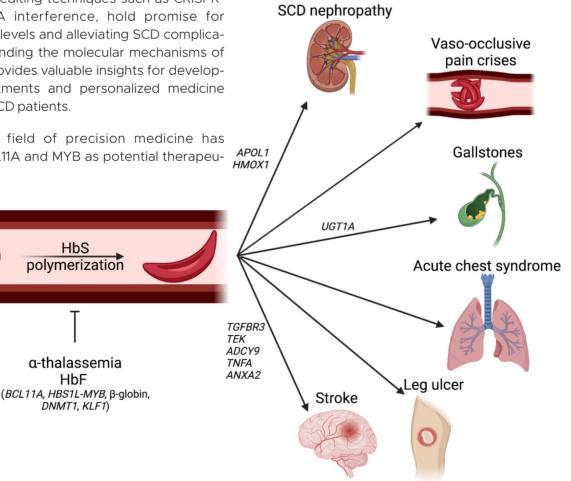
Therapeutic Implications of Mitochondrial Variants in SCD

Targeting mitochondrial dysfunction presents a novel therapeutic approach for SCD. Antioxidant therapies, such as N-acetylcysteine and mitoquinone, aim to mitigate oxidative stress. Additionally, mitochondrial transplantation and gene-editing technologies hold promise for correcting mtDNA mutations, potentially improving patient outcomes.

- Tumburu L, Ghosh-Choudhary S, Seifuddin FT, Barbu EA, Yang S, Ahmad MM, Wilkins LHW, Tunc I, Sivakumar I, Nichols JS, Dagur PK, Yang S, Almeida LEF, Quezado ZMN, Combs CA, Lindberg E, Bleck CKE, Zhu J, Shet AS, Chung JH, Pirooznia M, Thein SL. Circulating mitochondrial DNA is a proinflammatory DAMP in sickle cell disease. Blood. 2021 Jun 3;137(22):3116-3126. doi: 10.1182/blood.2020009063. Erratum in: Blood. 2022 Sep 15;140(11):1327. doi: 10.1182/blood.2021012839. PMID: 33661274; PMCID: PMC8176765.
- Akhter MS, Hamali HA, Rashid H, Dobie G, Madkhali AM, Mobarki AA, Oldenburg J, Biswas A. Mitochondria: Emerging Consequential in Sickle Cell Disease. J Clin Med. 2023 Jan 18;12(3):765. doi: 10.3390/jcm12030765. PMID: 36769414; PMCID: PMC9917941.

The Role of BCL11A and MYB Genes in **Modulating Sickle Cell Disease Severity**

BCL11A and MYB are two key transcription factors that regulate fetal hemoglobin (HbF) levels, playing a crucial role in modulating sickle cell disease (SCD) severity. BCL11A acts as a repressor of HbF expression by directly binding to regulatory elements of the HBG1 and HBG2 genes. Variants in the BCL11A gene region, identified through genome-wide association studies (GWAS), have been linked to elevated HbF levels, leading to milder SCD phenotypes.


MYB, on the other hand, modulates erythropoiesis and indirectly influences HbF production through the LIN28B-BCL11A pathway. A genetic variant in the MYB intergenic region has been associated with increased HbF expression and reduced disease severity in SCD patients.

Therapeutic approaches targeting BCL11A and MYB, including gene-editing techniques such as CRISPR-Cas9 and RNA interference, hold promise for enhancing HbF levels and alleviating SCD complications. Understanding the molecular mechanisms of these genes provides valuable insights for developing novel treatments and personalized medicine strategies for SCD patients.

The emerging field of precision medicine has highlighted BCL11A and MYB as potential therapeu-

tic targets for SCD. Research into small-molecule inhibitors, antisense oligonucleotides, and genomeediting strategies is ongoing to disrupt BCL11A's repressive activity, thereby increasing HbF levels and reducing sickling events. The MYB pathway is similarly being explored as a secondary target to enhance erythropoiesis and improve red blood cell function in SCD patients.

Advancements in gene therapy and pharmacological inhibitors that modulate BCL11A and MYB activity offer hope for more effective treatments. Future research will be crucial in refining these therapies to achieve sustained HbF elevation, improve patient outcomes, and ultimately provide curative options for sickle cell disease

- Ropero P, Peral M, Sánchez-Martínez LJ, Rochas S, Gómez-Álvarez M, Nieto JM, González FA, Villegas A, Benavente C. Phenotype of sickle cell disease. Correlation of haplotypes and polymorphisms in cluster β , BCL11A, and HBS1L-MYB. Pilot study. Front Med (Lausanne). 2025 Feb 12;12:1347026. doi: 10.3389/fmed.2025.1347026. PMID: 40012971; PMCID: PMC11864215.
- Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008 Dec 19;322(5909):1839-42. doi: 10 1126/science 1165409 Epub 2008 Dec 4 PMID: 19056937

Epigenetic Modifications in Sickle Cell Disease: Impact on Gene Expression and Disease Progression.

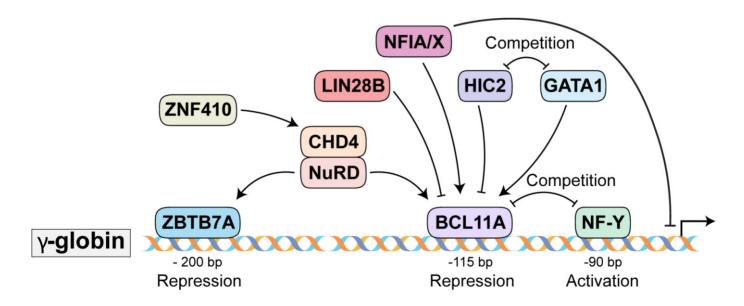
Epigenetic modifications play a crucial role in the pathophysiology of sickle cell disease (SCD) by influencing gene expression without altering the DNA sequence. These modifications, including DNA methylation, histone modifications, and non-coding RNAs, regulate the expression of genes involved in hemoglobin production, inflammation, and oxidative stress responses. Understanding these mechanisms provides insights into disease severity and potential therapeutic targets.

DNA Methylation and HbF Regulation

DNA methylation at the promoters of the HBG1 and HBG2 genes, which encode fetal hemoglobin (HbF), is a major determinant of HbF expression in SCD patients. Hypomethylation of these regions leads to increased HbF levels, mitigating the effects of HbS polymerization and reducing disease severity. Agents such as decitabine, which demethylate DNA, are being explored as therapeutic strategies to induce HbF production.

Histone Modifications and Chromatin Remodeling

Histone acetylation and methylation influence chromatin structure and gene accessibility. The


activation of HbF genes is associated with histone acetylation at enhancer regions, leading to increased HbF expression. Histone deacetylase (HDAC) inhibitors are being investigated as potential treatments to upregulate HbF and ameliorate SCD symptoms.

Non-Coding RNAs and SCD Pathophysiology

MicroRNAs (miRNAs) and long non-coding RNAs (IncRNAs) modulate gene expression in SCD. Specific miRNAs regulate erythropoiesis, inflammation, and hemolysis, contributing to disease progression. Targeting these non-coding RNAs through gene-silencing technologies presents a novel therapeutic avenue.

Therapeutic Implications

Epigenetic therapies, including DNA methyltransferase inhibitors, HDAC inhibitors, and RNA-based approaches, hold promise for SCD treatment. Advances in genome-wide epigenetic profiling are enhancing our understanding of disease mechanisms, paving the way for precision medicine approaches in SCD management.

- Steinberg, M. H., & Sebastiani, P. (2019). Genetic modifiers of sickle cell disease. American Journal of Hematology, 94(7), 762-770. https://doi.org/10.1002/ajh.25491
- Piel, F. B., & Patil, A. P. (2022). The genetic epidemiology of sickle cell disease and beta-thalassemia. Nature Reviews Genetics, 23(5), 304-318. https://doi.org/10.1038/s41576-022-00462-0

Meet the Doctors

Dr Kalyan Uppaluri is the co-founder and the owner of GenepoweRx Personalized medicine clinic and research institute, He did his medical training at the prestigious Gandhi Medical College. He then moved to the United States, where he specialized in Internal Medicine at the McLaren Hospital, Michigan. He also got a degree in Medical Genomics from Ivy league Institute, Stanford University and pursued Cancer research at Wayne State University.

Dr Hima Challa graduated from Gandhi Medical college and was among top few in her batch. She specialized in Internal Medicine at St. Joseph Mercy Oakland, Michigan in United States. She graduated in Medical genomics from the Ivy league Institution of Harvard Medical School. She also holds a master's in nutrition science from the Texas Women University and in integrative medicine from Arizona University.

Suit#2B Plot No.240, Nirvana Road No.36, Jubilee Hills Hyderabad - 500033, India +91 95022 22300 info@khdreamlife.com www.genepowerx.com